

cHRI Training

Charles Dischinger
Lynn Baroff
Tina Beard

Tina.Beard@nasa.gov

Three Laws of Robotics

Taken from Runaround (1942) by Isaac Asimov

- 1. "A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey any orders given to it by human beings, except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

- Aerial
- Sea
- Ground
- Subterranean
- Inter-planetary

- Unfolding decision environment
- Mixed assets that must work together and work semi-autonomously
- Desirable to designate a single operator to multiple UVs

HRI Issues

- Situation awareness
- Task switching
- Change blindness
- Recovery from interruptions and distractions
- Multi-tasking
- Trust in automation (over-reliance, under-reliance) PFA
- Mental workload
- Error diagnosis
- Plan monitoring and revision/Plan continuation errors
- Concurrent task management PM
- Loss of skills

How can training mitigate these issues?

Training Regime

- Should be based on
 - sources of automation usage errors
 - learning theory
 - Scenario-based
 - Performance feedback (extrinsic errors/appraisal)
 - human memory limitations
 - naturalistic decision making
 - attentional limitations

How you train is determined by what you want to train

- Motor response
- Perceptual detection
- Communication with robot
- Cognitive interpretation
- Prediction of what is coming next

ID Context

- Tasking environment
- Time pressure
- Fatigue
- Reliability of the system
- Information congruence
- Information accuracy
- Situation understanding
- Stress (performance consequences)
- Potential for automation bias
- Level of automation and "return to manual" performance
- Distractions

- Teach how to learn
- Train limitations and capabilities
 - Own
 - Varied skills, knowledge, experience; done with feedback during training
 - determining when to ask for help

Automation

- Provide insights into the <u>philosophy</u>, if any, which drove the design (process and algorithms)
 - » in-depth training on automated avionics systems
 - » fallacy that since the operator can not affect these matters, they have no need to know about them
 - » higher-level strategy(s) set by the human
- Train the past performance of the A/acc/inc <u>hanger</u> stories
- Train the operator regarding its expected reliability

cont.

- Train limitations and capabilities
 - Automation (continued)
 - Train the operator regarding the mechanisms governing its behavior and intended use
 - Train how to recognize that have to solve the problem on own
 - How to leverage abilities
 - Know when accurate information will be provided
 - Has robot been build to avoid hazards/to safe itself when necessary.
 - Awareness of context-related nature of robots reliability

- Train how to communicate effectively
 - teach the human to use the limited subset of <u>nomenclature</u> (e.g., ATC) that corresponds to the robot's sensing and acting repertoire
 - human communication is fraught with ambiguity, and that the robot needs a large base of experience for reference points to predict, fill in and otherwise disambiguate the conversation.
 - Train how to
 - » Communicate a common goal
 - » convey information
 - » how to ask questions, query automation (replay tools),
 - » inspect raw data,
 - » judge the quality of responses received,
 - » verify or negate automated advice
 - Vocabulary must be richer than the traditional feedback loop
 - Train to work as a partner; <u>CRM</u>

- Train to predict what is coming next
- Trial and error learning
 - Humans prefer to learn novel device usage through exploration in the context of real tasks

- Training must be <u>adaptive</u>
 - Skill level
- Issues such as remote sensing
 - Sensorimotor: Physical manipulation
 - repetitition leads to learning

Train subtle cues

- To learn what these cues are use <u>GDTA</u>, <u>cognitive walkthroughs</u>, <u>verbal protocol analysis or response classification imaging</u>
- Train how to recognize the relevance of the cues and their effects on the existing plans
- Train Attention
 - » literature indicates that attention to cues in field of view can be improved with repetitive training, showing a classic learning curve

Training alone is not sufficient

- Specialized interfaces
- Adaptive systems
 - Recurrent training
- Learning algorithms
- Human-robotic teaming

\$\$ on initial and recurrent training

- The right <u>information</u> is not provided, and it is not provided saliently
- Human-robot ≠ shared mental models
- Robot does not predictably <u>react</u> to human cues
- Standard nomenclature
- Robot is not socially intelligent
 - Comms interrupt primary task (can have neg effect on SA)
 - Particularly during
 planning (mission goal formation)
 evaluation (outcome interpretation and assessment)
- Tele-operation is better able to accommodate varying levels of autonomy and interaction
- Formal process to capture "Corporate Memory"
- Lessons unlearned without acc/inc database

Tina.Beard@nasa.gov